Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana.

نویسندگان

  • Shoko Kojima
  • Mayumi Iwasaki
  • Hiro Takahashi
  • Tomoya Imai
  • Yoko Matsumura
  • Delphine Fleury
  • Mieke Van Lijsebettens
  • Yasunori Machida
  • Chiyoko Machida
چکیده

Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant genes ETTIN/ARF3, KANADI2 and YABBY5. To clarify the role of AS2 in the establishment of leaf polarity, we isolated mutations that enhanced the polarity defects associated with as2. We describe here the enhancer-of-asymmetric-leaves-two1 (east1) mutation, which caused the formation of filamentous leaves with abaxialized epidermis on the as2-1 background. Levels of transcripts of class 1 KNOX and abaxial-determinant genes were markedly higher in as2-1 east1-1 mutant plants than in the wild-type and corresponding single-mutant plants. EAST1 encodes the histone acetyltransferase ELONGATA3 (ELO3), a component of the Elongator complex. Genetic analysis, using mutations in genes involved in the biogenesis of a trans-acting small interfering RNA (ta-siRNA), revealed that ELO3 mediated establishment of leaf polarity independently of AS2 and the ta-siRNA-related pathway. Treatment with an inhibitor of histone deacetylases (HDACs) caused additive polarity defects in as2-1 east1-1 mutant plants, suggesting the operation of an ELO3 pathway, independent of the HDAC pathway, in the determination of polarity. We propose that multiple pathways play important roles in repression of the expression of class 1 KNOX and abaxial-determinant genes in the development of the adaxial domain of leaves and, thus, in the establishment of leaf polarity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis.

We show that two Arabidopsis thaliana genes for histone deacetylases (HDACs), HDT1/HD2A and HDT2/HD2B, are required to establish leaf polarity in the presence of mutant ASYMMETRIC LEAVES2 (AS2) or AS1. Treatment of as1 or as2 plants with inhibitors of HDACs resulted in abaxialized filamentous leaves and aberrant distribution of microRNA165 and/or microRNA166 (miR165/166) in leaves. Knockdown mu...

متن کامل

The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development

The elongator complex subunit 2 (ELP2) protein, one subunit of an evolutionarily conserved histone acetyltransferase complex, has been shown to participate in leaf patterning, plant immune and abiotic stress responses in Arabidopsis thaliana. Here, its role in root development was explored. Compared to the wild type, the elp2 mutant exhibited an accelerated differentiation of its root stem cell...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis.

Plant shoots are characterized by indeterminate growth resulting from the action of a population of stem cells in the shoot apical meristem (SAM). Indeterminacy within the SAM is specified in part by the class I knox homeobox genes. The myb domain proteins rough sheath2 (RS2) and ASYMMETRIC LEAVES1 (AS1) from maize (Zea mays) and Arabidopsis thaliana, respectively, are required to establish det...

متن کامل

Quantitative control of ASYMMETRIC LEAVES2 expression is critical for leaf axial patterning in Arabidopsis

ASYMMETRIC LEAVES2 (AS2) is one of the key genes required for specifying leaf adaxial identity during leaf adaxial-abaxial polarity establishment. Previous data have shown that, in leaf development, AS2 is directly repressed by an abaxially located transcription factor KANADI1 (KAN1), so that the AS2 transcripts are restricted only in the adaxial leaf domain. It is shown here that, different fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 52 8  شماره 

صفحات  -

تاریخ انتشار 2011